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ABSTRACT

For sequence models with large vocabularies, a majority of network parameters
lie in the input and output layers. In this work, we describe a new method,
DeFINE, for learning deep token representations efficiently. Our architecture
uses a hierarchical structure with novel skip-connections which allows for the
use of low dimensional input and output layers, reducing total parameters and
training time while delivering similar or better performance versus existing meth-
ods. DeFINE can be incorporated easily in new or existing sequence models.
Compared to state-of-the-art methods including adaptive input representations,
this technique results in a 6% to 20% drop in perplexity. On WikiText-103,
DeFINE reduces the total parameters of Transformer-XL by half with minimal
impact on performance. On the Penn Treebank, DeFINE improves AWD-LSTM
by 4 points with a 17% reduction in parameters, achieving comparable perfor-
mance to state-of-the-art methods with fewer parameters. For machine transla-
tion, DeFINE improves the efficiency of the Transformer model by about 1.4
times while delivering similar performance.

1 INTRODUCTION

Neural models for NLP tasks, such as language modeling and machine translation, require large
vocabularies for generality (Chelba et al., 2013; Bahdanau et al., 2015; Luong et al., 2015; Merity
et al., 2017). These models often employ a similar architecture: tokens (e.g., words, sub-words,
or characters), represented as one-hot vectors, are mapped to a dense continuous space; they are
then processed by a context model; finally, the contextualized representations are mapped back to
a vocabulary-sized vector for computing next-token probabilities. A language modeling example
is shown in Figure 1a. The mapping in the first and last steps often uses a shared learned look-
up table, referred to as an embedding layer, which takes every token in the vocabulary to a fixed
m-dimensional vector. One drawback of this approach is that the number of parameters in the em-
bedding layer increases as the vocabulary size grows, limiting us to small values of m over large
vocabularies. Researchers have sought to improve the efficiency of the embedding layer by assign-
ing lower frequency tokens smaller dimensional vectors, however, significant parameter reductions
come at the cost of performance (Morin & Bengio, 2005; Grave et al., 2017a; Baevski & Auli,
2019). In all these approaches, token embedding is approximated with a linear function from tokens
to vectors.

In this work, we introduce Deep Factorized INput token Embeddings (DeFINE) for neural se-
quence modeling. DeFINE approximates the complicated token embedding function with far fewer
parameters compared to standard methods. DeFINE allows for lower-dimensional input and output
mappings in sequence models, reducing their computational burden without reducing performance.
The representations produced by DeFINE are more powerful than those of other factorization tech-
niques and even standard embedding layers. To accomplish this, DeFINE leverages a hierarchical
group transformation (HGT) that learns deep representations efficiently and effectively. HGT con-
nects different subsets of the input using sparse and dense connections. To improve the flow of
information, DeFINE introduces a new skip-connection that establishes a direct link with the input
layer at every level of its hierarchy, allowing gradients to flow back directly to the input via multiple
paths. DeFINE replaces standard embedding layers, leaving the rest of the model untouched, and
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Figure 1: With DeFINE, Transformer-XL learns input (embedding) and output (classification) rep-
resentations in low n-dimensional space rather than high m-dimensional space, thus reducing pa-
rameters significantly while having a minimal impact on the performance.

so it can be used with a wide variety of sequence modeling architectures and token-types, includ-
ing words and sub-words. Figure 1 shows how we incorporate DeFINE with Transformer-XL (Dai
et al., 2019), a state-of-the-art Transformer-based language model, and the resulting reduction in
total parameters.

Our experiments show that both LSTM- and Transformer-based sequence models benefit from the
use of DeFINE. Furthermore, our experiments with word-level language modeling and sub-word
level machine translation tasks show that DeFINE can be used with different token types. On the
Wikitext-103 dataset, an LSTM-based language model with DeFINE provides a 9 point improve-
ment over a full capacity model while using half as many parameters. When combined with adaptive
input (Baevski & Auli, 2019) and output (Grave et al., 2017a) representations, DeFINE improves the
performance by about 3 points across LSTM-based (see Table 1a) and Transformer-XL-based (see
Table 2) language models with a minimal increase in training parameters. Computation time at infer-
ence is unaffected.1 Incorporating DeFINE into the popular AWD-LSTM language model (Merity
et al., 2018b) without finetuning results in a test perplexity of 54.2 on the Penn Treebank dataset,
outperforming both the original and fine-tuned AWD-LSTM models as well as Transformer-XL and
MoS (Yang et al., 2018). For machine translation, DeFINE improves the efficiency of a Transformer
model (Vaswani et al., 2017) by 26% while maintaining translation quality. We provide substantive
experiments which detail the impact of our architecture decisions and demonstrate the effectiveness
of DeFINE across models of varying capacities.

2 RELATED WORK

Many sequence modeling tasks, including language modeling and machine translation, have a large
vocabulary. As a consequence, the majority of a model’s parameters are located in the input (or
embedding) and the output (or classification) layers. To reduce the computational load presented by
these layers, Press & Wolf (2017) and Inan et al. (2017) introduce an effective mechanism called
weight-tying that enables learning input and output representations jointly while significantly reduc-
ing the number of network parameters. To further reduce the computational load from these layers,
factorization-based methods, such as projective embeddings (Dai et al., 2019), grouped embeddings
(Chen et al., 2018; Grave et al., 2017a; Goodman, 2001; Mnih & Hinton, 2009; Morin & Bengio,
2005), and slim embeddings (Li et al., 2018), have been proposed. Projective embeddings approxi-
mate a large embedding matrix with two smaller matrices while grouped embeddings cluster input
tokens by frequency and assign different capacities to different clusters using projective embedding
methods. We note that projective embeddings is a special case of grouped embeddings when the

1Embeddings learned using DeFINE can be cached, so DeFINE does not increase the computational cost
at inference.
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number of clusters is one. The adaptive input method of Baevski & Auli (2019) generalizes pro-
jective and grouped embedding methods and proposes a factorization method that allows for faster,
memory-efficient end-to-end training while providing similar or better benefits compared to exist-
ing post-training methods which require a pretrained embedding matrix (Chen et al., 2018). Unlike
projective and grouped embeddings, Li et al. (2018) extends group transformation (Kuchaiev &
Ginsburg, 2017; Mehta et al., 2018) with the shuffling algorithm of Fisher & Yates (1943) to factor-
ize these layers. Other techniques such as codebook learning (Shu & Nakayama, 2017; Chen et al.,
2016; Acharya et al., 2019) and quantization (Rastegari et al., 2016; Hubara et al., 2017) can be used
to further improve efficiency, especially in terms of storage requirements. DeFINE is orthogonal
to these methods; our empirical results in Section 4 show improved performance compared to these
methods alone.

Recent advances in sequence modeling, such as Transformers and multi-layer RNNs, demonstrate
the power of deep architectures in NLP (Jozefowicz et al., 2016; Vaswani et al., 2017; Merity et al.,
2018a). But while significant attention has been given to modeling the interactions between tokens
with deep architectures (e.g., ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019)), context-
free token representations are typically modeled with only corpus statistics (Pennington et al., 2014)
or a single linear transformation (Mikolov et al., 2013; McCann et al., 2017). Character-level models
(Kim et al., 2016) also effect deep representations of words as a convolution over characters, however
these models often require more capacity to deliver performance comparable to word- or sub-word-
level models (Baevski & Auli, 2019). Still, DeFINE can be used to learn deep representations of
a variety of token types, including words, characters, or sub-words (byte-pair encodings) (Sennrich
et al., 2015).

3 DEFINE

Token embedding is often treated as simple function of a one-hot vector to a dense continuous space.
The embedding layer can thus be thought of as a wide, shallow network consisting of a single linear
transformation. At its heart, the function that this network approximates (call it f ) takes a token from
its orthographic form to a representation of those of its morphosyntactic and semantic properties
which are relevant for modeling an arbitrary number of contexts in which the token can occur.
Most NLP research assumes a simple embedding layer can sufficiently approximate the intractable
function f . We hypothesize that, due to the complexity of f , a shallow network would require
exceptional capacity to learn a good approximation. Time and data constraints prohibit learning
such a high capacity shallow network. We propose, based on recent theoretical results of Liang &
Srikant (2017),2 that a deeper network can approximate f with significantly fewer parameters than a
shallow network. The validity of this assumption is evidenced by our experimental results in Section
4.

In this work, we introduce DeFINE, an effective way of learning deep token representations in
high-dimensional space with a minimum of additional parameters. Our method is based on a Map-
Expand-Reduce (MER) principle, described in Section 3.1, that first maps an input token to a low
dimensional embedding vector, then transforms it to a high-dimensional space using a computa-
tionally efficient hierarchical group transformation (HGT, Section 3.2), which is sketched in Figure
2c. The resultant vector is then transformed to a low-dimensional space. Over the course of these
transformations, we make use of a new connectivity pattern that establishes a direct link between the
input and output layers (Figure 3), promoting feature reuse, and improving gradient flow (Section
3.3). The output layer of DeFINE can then be used in place of a traditional embedding as an input
to sequence modeling tasks. We detail the various aspects of the architecture below.

3.1 THE MAP-EXPAND-REDUCE PRINCIPLE (MER)

The first step in MER, Map, is similar to standard sequence models. Every input token in the vocab-
ulary V is mapped to a fixed dimensional vector ei ∈ Rn×1. However, in our case, the value of n
is small (say 64 or 128, compared to typical dimensions of 400 or more). The next step, Expand,

2Liang & Srikant (2017) prove that, for a large class of functions, the number of neurons needed by a
shallow network to approximate a function is exponentially larger than the corresponding number of neurons
needed by a deep network. We make the assumption that f is in this class of functions.
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Figure 2: Learning token representations using different transformation layers with N = 3. (a)
Linear Transform (b) Group linear transforms (GLT) (c) HGT (see text for details). Here, N is the
total number of layers, nl and kl are the input and output dimensions of l-th layer, gl is the number
of groups in l-th layer, and g is the fixed number of groups in group linear transforms.

takes ei as an input and applies a hierarchical group transformation (HGT) to produce a very high-
dimensional vector êi ∈ Rk×1, where k >> n. Unlike a stack of fully connected layers, HGT learns
deep representations efficiently from different subsets of the input using sparse and dense connec-
tions. The last step, Reduce, projects the vector êi to a lower dimensional space to produce the final
embedding vector eo ∈ Rm×1 for a given input token. The dimensions of eo can be matched to
contextual representation models, such as LSTMs or Transformers, allowing DeFINE to serve as an
input layer for these models.

3.2 HIERARCHICAL GROUP TRANSFORMATION (HGT)

We introduce a hierarchical group transformation (HGT), sketched in Figure 2c, to learn deep token
representations efficiently. HGT comprises of a stack of N layers. At each layer, HGT uses a different
number of groups that allows it learn representations from different subsets of input. HGT starts with
gmax groups at the first layer and then subsequently decreases the number of groups by a factor of
2 at each level. This hierarchical grouping mechanism sparsifies the connections in fully connected
(or linear) layers and allows us to learn representations efficiently with fewer parameters. Similar
to a stack of fully connected layers, the N -th layer in HGT has access to every input element of the
first layer through multiple paths, thereby, allowing it to learn effective representations. Group linear
transformations (GLT), originally introduced to improve the efficiency of the LSTM, also sparsify
the connections in fully connected layers and significantly reduce computational costs (Kuchaiev &
Ginsburg, 2017; Mehta et al., 2018). However, if we stack multiple GLT layers, the outputs of a
certain group are only derived from a small fraction of the input, thus learning weak representations.
The hierarchical grouping mechanism in HGT allows the N -th layer to obtain input data from multi-
ple paths, enabling HGT to learn stronger representations. A comparison of different transformations
is given in Figure 2. We can see that HGT is both efficient and has better access to the input. Note
that linear and group linear transforms are special cases of HGT when gl = 1 and gl = g (fixed),
respectively.

To transform ei ∈ Rn×1 to êi ∈ Rk×1, HGT first samples the space between n and k linearly to
construct N intermediate layers of increasing dimensionality. Therefore, the output vector produced
by l+1-th layer will have higher dimensionality than the l-th layer. Assume that the linearly spaced
vector dimensions are divisible by gmax, we transform ei to êi as follows:

êli =

{
FG

(
ei,W

l, gl
)
, l = 1

FG

(
êl−1i ,Wl, gl

)
, 1 < l ≤ N

(1)

where gl = max
(
b gmax

2l−1 c, 1
)
, Wl are the weights learned at l-th layer, and FG is a group transfor-

mation function defined in Mehta et al. (2018). Group transformation splits the input into g groups,
each of which is processed independently using a linear transformation. The output of these groups
are then concatenated to produce final output. See Section A.1 for details.

3.3 DEFINE UNIT

The DeFINE unit is composed of HGT transformations that are designed using the MER principle.
Though HGT layers are an efficient approximation to computationally expensive fully connected
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Figure 3: The DeFINE unit with N = 2 that uses HGT to learn input token representations efficiently
and a direct connection with the input to maximize the flow of information.

layers, they might impede training as the depth N of the DeFINE unit grows. Residual connections
(He et al., 2016) have proved to be very effective at mitigating this issue, however, such connections
are difficult to implement in HGT because the input and output dimensions of each layer are different.

To maximize the flow of information and facilitate training with deeper DeFINE units, we introduce
a simple new skip-connection that establishes a direct link between any layer in HGT with the input
ei. Figure 3 visualizes the DeFINE unit with a depth of two (N=2). To enable the sparse connec-
tions in HGT to have access to the input ei and the output of the previous layer (êl−1i ), we chunk
the input and the output into gl groups using a split layer. The chunked input and output vectors are
then mixed such that the first chunk of the input and the first chunk of the l− 1-th layer’s output are
put together as the input for the first group transformation in the l-th layer and so on until gl inputs
have been constructed. The resultant vector is then fed to the l-th layer. This mechanism promotes
input feature reuse efficiently. Additionally, it establishes a direct link with the input ei, allowing
gradients to flow back to the input via multiple paths and resulting in improved performance.

3.4 DEFINE FOR SEQUENCE MODELING

The DeFINE unit can be easily integrated with any new or existing sequence models. Sequence
models typically consist of a stack of an input layer (embedding or adaptive input layer), a contex-
tual model (e.g., LSTM or Transformer), and a classification layer (a fully-connected or adaptive
softmax). Since DeFINE learns deep token representations, we can easily stack it immediately after
the input. An example is shown in Figure 1, where DeFINE is integrated with Transformer-XL, a
state-of-the-art language model. DeFINE enables the use of relatively lower dimensions in the input
layer, thus reducing network parameters.

The input token representations, ei, êi, and eo, that a neural model learns for each token are inde-
pendent of other tokens. This allows us to create another independent look-up table (after training
a model) that caches the mapping between the input token and the output of the DeFINE unit (eo),
resulting in a mechanism that allows to skip the computations of the DeFINE unit at inference time.

4 EXPERIMENTAL RESULTS

We demonstrate the performance of DeFINE on two sequence modeling tasks: language modeling
(Section 4.1) and machine translation (Section 4.2). We compare the performance of DeFINE with
existing factorization and compression-based methods in Section 4.3. We also provide ablations in
Section 4.4 to show the effectiveness of our design decisions. Throughout this section, we use the
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Configuration Parameter Distribution (in millions) Training Perplexity
Row Input-Output Depth of Dimension of DeFINE Context Input-Output Total Time Val Test# Layers DeFINE (N ) ei (n) model (tied) (ms/batch)
R1? Standard – 256 0.00 23.36 68.81 92.17 1150 43.24 44.12
R2 Adaptive – 256 0.00 23.36 9.25 32.61 297 43.49 44.87

R3 Adaptive + DeFINE 3 256 0.41 23.36 9.25 33.02 298 39.99 41.17
R4 Adaptive + DeFINE 7 384 1.83 24.73 13.90 40.46 364 36.95 38.01
R5 Adaptive + DeFINE 11 512 3.89 26.24 18.55 48.69 459 34.94 35.94

(a) LSTM-based language model (ours) on WT103. ? For this experiment, we use two GPUs.

Model # Parameters Perplexity
(in millions) (Test)

Grave et al. (2017b)-LSTM – 48.7
Grave et al. (2017b)-LSTM + Neural Cache – 40.8
Merity et al. (2018a) - QRNN 151 M 33.0
LSTM + DeFINE (Ours) 48.69 M 35.94

(b) Comparison with existing works on WT-103

Model # Parameters Perplexity
(in millions) Val Test

AWD-LSTM (Merity et al., 2018b) 24 M 61.2 58.8
AWD-LSTM + Finetune 24 M 58.8 56.5
AWD-LSTM-MoS (Yang et al., 2018) 22 M 58.1 56.0
AWD-LSTM-MoS + Finetune 22 M 56.5 54.4
Transformer-XL (Dai et al., 2019) 24 M – 54.5

AWD-LSTM + DeFINE (Ours) 20 M 56.5 54.2

(c) Comparison with existing works on the PTB dataset

Table 1: Performance of RNN-based language models on WT-103 and PTB dataset. In (a), standard
refers to standard (linear) embedding and classification layers while adaptive refers to adaptive input
and adaptive softmax for the input and the output layers, respectively.

following notation: n, k, and m are dimensions of ei, êi, and eo respectively, and N represents
depth of DeFINE.

4.1 LANGUAGE MODELING

In this section, we study the performance of our models with LSTM- and Transformer-based lan-
guage models on two datasets: WikiText-103 (Merity et al., 2017) and the Penn Treebank (Marcus
et al., 1994). On both datasets, we show that DeFINE is parameter efficient and improves the
performance of existing language models.

4.1.1 WIKITEXT-103 (WT-103)

Data and models: The WikiText-103 dataset (Merity et al., 2017) consists of 103M/217K/245K
tokens for training, validation, and test sets respectively and has a vocabulary size of about 260K.
This dataset is composed of Wikipedia articles and retains punctuation, numbers, and case. To
evaluate the effectiveness of DeFINE, we study two different kinds of contextual models: LSTM,
and Transformer (Transformer-XL (Dai et al., 2019)). We measure the performance of these models
in terms of perplexity, a standard metric for language modeling. Lower values of perplexity indicate
better performance. Following recent works, including Merity et al. (2018a), Baevski & Auli (2019),
and Dai et al. (2019), we use adaptive inputs as a mapping function in DeFINE and adaptive softmax
for classification with tied weights. See A.3 for more details.

Results of LSTM-based language models: Table 1 summarizes the results of LSTM-based lan-
guage models. Though the adaptive input (Baevski & Auli, 2019) and output (Grave et al., 2017a)
methods are effective and reduce the number of parameters significantly, our method further im-
proves performance by about 3 points while learning only 1.25% (or 0.4 million) more parameters.
It is important to note that the computational complexity of models in R2 and R3 is the same because
our method allows caching outputs of DeFINE for use at inference (see Section 3.4).

When we scale the depth of DeFINE from 3 to 11 layers (Table 1b)3, the performance improves by
a further 6 points, delivering competitive performance to existing RNN-based methods with fewer
parameters (e.g., 1/3 as many parameters as Merity et al. (2018a)). The performance of our model
is better than existing methods such as Dauphin et al. (2017) and Bai et al. (2018).

Results of Transformer-based model: Table 2 compares the performance of Transformer-XL, a
state-of-the-art Transformer-based model, with and without DeFINE. Table 2a shows our method
is able to attain similar performance to Dai et al. (2019) while learning 10M fewer parameters. It

3We scale the input and the output dimensions to uniformly increase the network complexity.
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Model Input-Output Dimension Parameter Distribution (in millions) Training Perplexity
of ei DeFINE Context Input-Output Total Time Val TestLayers (n) model (tied) (ms/batch)

Transformer-XL? Standard 410 0.00 41.07 110.04 151.11 894 – 24.03
Transformer-XL Standard 384 0.00 36.25 103.08 139.33 855 26.10 27.06
Transformer-XL DeFINE 384 1.92 36.25 103.08 141.25 860 23.59 24.17

Transformer-XL Projective 256 0.00 36.25 69.20 105.45 714 27.18 28.09
Transformer-XL DeFINE 256 1.92 36.25 69.20 107.37 721 24.81 25.72

Transformer-XL Projective 128 0.00 36.25 34.73 70.98 600 28.06 29.16
Transformer-XL DeFINE 128 1.92 36.25 34.73 72.90 606 25.43 26.33

Transformer-XL Projective 64 0.00 36.25 17.50 53.75 550 32.94 33.74
Transformer-XL DeFINE 64 1.92 36.25 17.50 55.67 553 28.03 29.10

(a) Comparison grouped by mapping layer ei.
Model Parameters (in million) Perplexity
Transformer-XL (Standard) 139.33 M 27.06
Transformer-XL (DeFINE) 72.90 M 26.33
Transformer-XL (Projective) 70.98 M 29.16
Transformer-XL (DeFINE) 55.67 M 29.10

(b) Comparison grouped by similar perplexity.

Table 2: Transformer-XL performance on Wikitext-103 dataset. We use DeFINE with N = 3,
k = 4096, and m = 384. For models without DeFINE, we use projective embeddings (Dai et al.,
2019) that linearly projects the vector ei to a dimension of m = 384. Except the row marked with
? that uses inner model dimension of 2100, all other rows uses an inner model dimension of 1920.
Best number in each group in Table 2a is highlighted in red while overall best numbers are marked
in bold. Table 2a shows that adding DeFINE significantly improves results with low overhead;
Table 2b shows the parameter reduction using DeFINE for similar performance.

is interesting to note that DeFINE enables us to reduce the computational burden from the input
and output layers by a large amount with minimal impact on performance. With DeFINE, the
performance of Transformer-XL drops only by about 2 points while the number of parameters are
reduced by 50%. For similar reduction in the number of parameters, the performance of original
Transformer-XL drops by 5 points, suggesting the proposed method for learning word-level rep-
resentations is effective. Table 2b highlights the fact that Transformer-XL with DeFINE is able
to achieve comparable perplexity to a standard Transformer-XL with projective embeddings while
using significantly fewer parameters.

4.1.2 PENN TREEBANK (PTB)

Data and models: The Penn Treebank dataset (Marcus et al., 1994) contains about 929K/74K/82K
tokens in its train, validation, and test sets respectively. It has a vocabulary size of about 10K.
Following recent works, we use the processed version provided by Mikolov et al. (2010). To evaluate
the effectiveness of our model, we compare to AWD-LSTM (Merity et al., 2018b). Our model
replaces the embedding layer in AWD-LSTM with DeFINE unit with the following settings: n =
128, k = 1024, N = 7, and m = 400. We use the same hyper-parameters and PyTorch version as
the original AWD-LSTM.

Results: Results are summarized in Table 1c. The proposed method improves the performance
of AWD-LSTM by 4 points while simultaneously reducing the number of parameters by 4 million.
Without any finetuning, AWD-LSTM + DeFINE achieves comparable performance to state-of-the-
art methods, including Transformer-XL, with fewer parameters.

4.2 MACHINE TRANSLATION

Data and models: We use the WMT 2014 English-German (EN-DE) dataset (Luong et al., 2015)
for training. Following Vaswani et al. (2017), we encode sentences using byte-pair encoding (Britz
et al., 2017) and use newstest2014 and newstest2017 as validation and test sets, respectively. We
integrate DeFINE with the state-of-the-art Transformer model (Vaswani et al., 2017) with following
parameters: n = 128, k = 1024, m = 512, and N = 3. We use the implementation in OpenNMT-
py (Klein et al., 2017) for training and evaluation with the recommended hyper-parameters.
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Model Checkpoint Parameters BLEU (EN-DE)
Averaging? (in millions) newstest2014 newstest2017

Transformer (Vaswani et al., 2017) 3 – 27.30 –
Transformer + SRU (Lei et al., 2018) 3 90 M 27.1 28.30
Transformer (OpenNMT impl.) (Klein et al., 2017) 3 92 M 26.89 28.09

Transformer 7 92 M 25.01 25.81
Transformer + DeFINE 7 68 M 27.01 28.25

Table 3: Results of Transformer-based model (with and without DeFINE) on the task of neural
machine translation. DeFINE attains similar performance to checkpoint averaging, but with fewer
parameters.

Sequence Task Input-Output Parameters PerformanceModel Layers (in millions)
LSTM

Language Modeling
Standard 92 M 44.12

(Table 1a) Adaptive 33 M 44.87
DeFINE 33 M 41.17

AWD-LSTM Language Modeling Standard 24 M 58.8
(Table 1c) DeFINE 20 M 54.2
Transformer-XL

Language Modeling
Standard 139 M 27.06

(Table 2) Projective 71 M 29.16
DeFINE 73 M 26.33

Transformer Machine Translation Standard 92 M 25.81
(Table 3) DeFINE 68 M 28.25

Table 4: Performance comparison of different sequence models with different factorization methods.
Projective and adaptive factorization method refers to methods in Dai et al. (2019) and Baevski
& Auli (2019), respectively. For language modeling, performance is measured by perplexity; for
machine translation, BLEU is used.

Results: Table 3 summarizes the results. DeFINE improves the performance of the Transformer
model without checkpoint averaging by 2% while simultaneously reducing the total number of pa-
rameters by 26%, suggesting that DeFINE is effective.

4.3 COMPARISON WITH DIFFERENT METHODS

Factorization-based methods: Table 4 compares the performance of different factorization meth-
ods for different sequence models. With DeFINE, the performance and efficiency of sequence
models improves across different tasks. This is likely because the output of DeFINE more closely
approximates the correlation pattern of a standard embedding layer compared to other embeddings
(see Figure 4 and Appendix B). Furthermore, we see that strong correlations between dimensions
in the mapping layer of DeFINE are reduced over the course of the expansion layers (see Figures
8, 9, and 10 in Appendix). Figure 11 in Appendix shows that groups within an expansion layer of
DeFINE are not correlated, suggesting these matrices are learning different representations of their
input.

Impact of compression-based methods: Compression-based methods allow for efficiently dis-
cretizing the continuous 32-bit full-precision embedding vectors, thus reducing the memory foot-
print of the input layer. With DeFINE, we also learn a continuous full precision 32-bit floating-point
embedding vector (similar to Baevski & Auli (2019) and Dai et al. (2019)). Therefore, compression-
based methods, such as (Shu & Nakayama, 2017), can be applied to sequence models with DeFINE
and other factorization methods. Table 5 shows that DeFINE embeddings can be compressed simi-
larly to standard embeddings without loss of performance.

4.4 ABLATION STUDIES ON WIKITEXT-103 DATASET

In this section, we provide an analysis of our design choices using an LSTM-based language model.
In our ablations, we choose LSTM- over Transformer-based language models because they are less
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(a) Standard (no factorization) (b) Projective (Dai et al., 2019) (c) DeFINE (Ours)

Figure 4: Correlation map (m×m) of different embedding layers used in Transformer-XL with n =
128 and m = 384 on the WikiText-103. DeFINE is able to approximate the standard embedding
matrix efficiently. More visualizations are included in Appendix B.

Dimension of Input-Output Compression Look-up Table Perplexity Inference Time
ei (n) Layers Used? Size (in MB) (in ms/batch)
384 Standard None 411 27.06 202
384 Standard Yes 21 27.36 201

128 Projective None 127 29.16 129
128 Projective Yes 21 29.82 129

128 DeFINE None 127 26.33 131
128 DeFINE Yes 21 26.03 130

Table 5: The performance of Transformer-XL with different factorization methods, with and without
compression method of Shu & Nakayama (2017). For compression, we used a 32 x 16 coding
described in Shu & Nakayama (2017).

sensitive to hyper-parameters and can be trained on a single GPU. We use the same hyper-parameters
for training as described in Section 4.1.1, specifically N = 7, n = 384, k = 1024, and m = 384.

Impact of different transformations: Table 6 summarizes our results. HGT is as effective as lin-
ear transformation while learning two million fewer parameters. Compared to group linear transform
(GLT), HGT improves perplexity by about 5 points while learning a similar number of parameters.
Furthermore, when we establish a direct connection with the input (see Section 3.2 for details),
the performance further improves by 2.9 points with a minimal impact on number of parameters,
suggesting that DeFINE learns good representations.

Impact of scaling depth (N ) and width (k): Table 7 summarizes the results of our scaling exper-
iments. For the same value of k, the performance of the language model improves with the increase
in the depth N . However, when we scale the width k for a fixed value of depth N , the performance
does not improve. This is likely because, as we increase the size of k, more neurons are receiving
their input from the same subset of dimensions and thus learning many redundant parameters.

DeFINE with different connections: Table 8a demonstrates the impact of residual connections
in DeFINE. In order to facilitate residual connections inside DeFINE, we fix the dimension of each
layer êli in DeFINE to be k

2 instead of linearly spanning from n to k. We can clearly see that the
proposed skip-connections are more effective.

Impact of reduce operation in MER: In the MER strategy (Section 3.1), we project the high-
dimensional vector to a low-dimensional space before feeding it to a contextual model, such as an
LSTM. We empirically found that the performance with and without this reduction step is similar,
however, a model without the reduction step learns more parameters (Table 8b).

5 CONCLUSION

DeFINE uses a deep, hierarchical, sparse network with new skip connections to learn better token
embeddings efficiently. Sequence models with DeFINE (e.g., Transformer and LSTM) perform
comparably or better with state-of-the-art methods with fewer parameters. Our experiments show

9
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Layer # Parameters Perplexity
(in millions) Val Test

Linear 42.86 39.89 41.19
GLT 39.69 44.28 45.63
GLT + Shuffle 39.69 44.08 45.25
HGT 40.73 39.79 40.92

(a) Different transformations (see Figure 2)

Layer # Parameters Perplexity
(in millions) Val Test

HGT 40.73 39.79 40.92
DeFINE (w/o mixer) 40.89 37.84 38.91
DeFINE 40.89 36.95 38.01

(b) HGT vs. DeFINE

Table 6: Comparison between different transformations on the WikiText-103 dataset.

Depth of Dimensions of # Parameters Perplexity
DeFINE (N ) ei (n) eo (m) êi (k) (in millions) Val Test

3 256 256
1024 33.02 39.99 41.17
1536 33.15 40.08 41.25
2048 33.29 40.23 41.37

7 384 384
1024 40.73 36.95 38.01
1536 41.86 36.85 37.81
2048 43.19 36.95 37.84

11 512 512
1024 49.55 34.94 35.94
1536 52.02 35.25 35.98
2048 55.02 35.00 35.92

(a) Depth (N ) vs width (k)
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(b) Validation perplexity vs. epochs

Table 7: Impact of scaling depth and width on WT-103.

Parameters Perplexity
(in millions) val Test

DeFINE + residual conn. 41.63 38.96 40.03
DeFINE 40.89 36.95 38.01

(a)

Parameters Perplexity
(in millions) val Test

MER 40.89 36.95 38.01
- Reduce 43.91 37.19 38.34

(b)

Table 8: Different settings on WT-103: (a) Impact of different skip-connections. See Figure 5b and
Figure 5c in Section A.2 for block level diagrams. (b) Impact of reduce operation in MER (Sec-
tion 3.1).

that the proposed architectural decisions each contribute to the effectiveness of the DeFINE unit.
We believe neural sequence models with DeFINE can be further improved with extended hyper-
parameter search, similar to Melis et al. (2018). In future work, we will apply DeFINE to other
sequence modeling tasks. For instance, we believe that pretrained language model architectures such
as ELMo and BERT can benefit from incorporating DeFINE to improve efficiency and performance.
Another direction is to use the components of DeFINE – specifically MER, HGT, and mixing layers
– in neural architecture search processes. We have shown the promise of these components here, but
a thorough architecture search may discover more optimal configurations in the large search space
defined by the depth, grouping, and connectivity parameters.
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A APPENDIX

A.1 TRANSFORMATION FUNCTION FG

To produce an output y ∈ Rm×1 from an input x ∈ Rn×1 and weight matrix W ∈ R
n
g×

m
g , FG first

chunks the input x into g groups and then concatenates the chunked parts to produce x̂ ∈ Rg×n
g . x̂

is then multiplied with weight matrix W to produce ŷ = x̂ ·W ∈ Rg×m
g . The resultant vector ŷ is

then flattened to produce y. When g = 1, we obtain the linear transform.

A.2 BLOCK LEVEL DIAGRAMS OF DIFFERENT SKIP-CONNECTIONS IN DEFINE

Block level diagrams of different variants of DeFINE are given in Figure 5. Figure 5a stacks trans-
formation layerFG (Eq. 1) and is the same as HGT in Figure 2c. Figure 5b adds a residual connection
to Figure 5a. Figure 5c is the same as Figure 3 while Figure 5d is the same as Figure 5c, but without
split and mixer functionality.
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Transformation 

Layer

Transformation 

Layer
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(a) HGT
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(c) DeFINE
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Transformation 
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Transformation 

Layer
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Concat

(d) DeFINE (w/o mixer)

Figure 5: Different ways of stacking transformation layer FG (Sec. A.1) for learning deep token
representations.

A.3 HYPER-PARAMETERS FOR TRAINING LANGUAGE MODELS

For training LSTM-based language models, we use a single NVIDIA GTX 1080 Ti GPU with 11
GB GPU memory while for training Transformer-XL, we used four GeForce RTX 2080 Ti GPUs,
each with 11 GB of GPU memory (as recommended by authors). Following recent works, including
Merity et al. (2018a) and Baevski & Auli (2019), we use adaptive inputs as a mapping function
in DeFINE and adaptive softmax for classification for our experiments with RNN-based sequence
models. We also tie weights between the adaptive inputs and outputs. For Transformer-XL Dai et al.
(2019), we use projective embeddings (as done by authors). We train our models using PyTorch
(v1.2). For LSTM-based language models, we use similar hyper-parameters as Merity et al. (2018a)
which are summarized in Section 9.

A.4 PERFORMANCE OF TRANSFORMER-XL ON WIKITEXT-103

Figure 6 plots the validation perplexity of Transformer-XL on the WikiText-103 as a function of
training steps. We can see that DeFINE enables Transformer-XL to deliver similar performance
with fewer parameters.
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WikiText-103
# of GPUs 1
Weight decay 0
Optimizer SGD
LR 20
BPTT Length 140
Batch size 60
Epochs 20
LR reduction (factor, steps) 10, [15]
LSTM Hidden Dimension 1024
# of LSTM Layers 4
Max. dimension of êi (k) 1024
Dropout Same as Merity et al. (2018a)

Table 9: Hyper-parameters for training word-level LSTM-based language model on WikiText-103.
These settings are similar to Merity et al. (2018a).

Figure 6: Transformer-XL performance on Wikitext-103 dataset with DeFINE.

B CORRELATION MAP VISUALIZATION FOR TRANSFORMER-XL ON
WIKITEXT-103

Computing correlation map: Let us say that we have an arbitrary look-up table E ∈ RV×m that
maps every token in vocabulary V to a m-dimensional vector space. We compute the correlation
map M as: M = ET · E ∈ Rm×m.4 If the correlation map is identity, then it suggests that the m-
dimensions in E are independent. To encode better contextual representations among tokens using
context models such as LSTMs and Transformers, embedding dimensions should be independent.

Can DeFINE approximate the standard embedding layer? Figure 7 visualizes the correlation
maps of embeddings learned using a standard embedding layer (top row), projective embeddings
(Acharya et al., 2019; Dai et al., 2019) (middle row), and DeFINE embeddings (bottom row) at
different values of n, where n is the dimension of mapping layer in DeFINE. Compared to pro-
jective embeddings, DeFINE is able to approximate the standard embedding layer efficiently and
effectively (see Table 2 for efficiency and performance comparison).

Furthermore, we provide layer-wise comparison for DeFINE at different values of n in Figures 8,
9, and 10. The mapping layer in DeFINE is in low-dimensional space and has correlations. As
we learn deeper representations using DeFINE, these correlations are reduced and we obtain a cor-
relation matrix similar to a standard embedding layer. This suggests that DeFINE is effective in
approximating the standard embedding layer. Importantly, the groups at different expansion lay-
ers in DeFINE are independent (see Figure 11), suggesting these matrices are learning different
representations of their input.

4Correlation maps are normalized between 0 and 1.
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Standard embeddings

Projective embeddings

n = 64 n = 128 n = 256

DeFINE

n = 64 n = 128 n = 256

Figure 7: Standard embedding matrix approximations using projective embeddings and DeFINE for
Transformer-XL at different values of n.
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Map layer in DeFINE

Expansion layer 1 in DeFINE

Expansion layer 2 in DeFINE

Reduction layer in DeFINE

Figure 8: Layer-wise visualization of correlation maps of DeFINE embeddings when n = 64.
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Map layer in DeFINE

Expansion layer 1 in DeFINE

Expansion layer 2 in DeFINE

Reduction layer in DeFINE

Figure 9: Layer-wise visualization of correlation maps of DeFINE embeddings when n = 128
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Map layer in DeFINE

Expansion layer 1 in DeFINE

Expansion layer 2 in DeFINE

Reduction layer in DeFINE

Figure 10: Layer-wise visualization of correlation maps of DeFINE embeddings when n = 256

Expansion layer 1 in DeFINE with 4 groups

n = 64 n = 128 n = 256

Expansion layer 2 in DeFINE with 2 groups

n = 64 n = 128 n = 256

Figure 11: Groups in expansion layers of DeFINE are orthogonal, suggesting these matrices are
learning different representations of their input.
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